Construction of Gauss-Christ of fei Quadrature Formulas

نویسندگان

  • Walter Gautschi
  • WALTER GAUTSCHI
چکیده

Each of these rules will be called a Gauss-Christoffel quadrature formula if it has maximum degree of exactness, i.e. if (1.1) is an exact equality whenever / is a polynomial of degree 2n — 1. It is a well-known fact, due to Christoffel [3], that such quadrature formulas exist uniquely, provided the weight function w(x) is nonnegative, integrable with /* w(x)dx > 0, and such that all its moments

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence and construction of rational Gauss-type quadrature rules

Consider a hermitian positive-definite linear functional F, and assume we have m distinct nodes fixed in advance anywhere on the real line. In this paper we then study the existence and construction of nth rational Gauss-Radau (m = 1) and Gauss-Lobatto (m = 2) quadrature formulas that approximate F{f}. These are quadrature formulas with n positive weights and with the n−m remaining nodes real a...

متن کامل

On weight functions which admit explicit Gauss-Turán quadrature formulas

The main purpose of this paper is the construction of explicit Gauss-Turán quadrature formulas: they are relative to some classes of weight functions, which have the peculiarity that the corresponding s-orthogonal polynomials, of the same degree, are independent of s. These weights too are introduced and discussed here. Moreover, highest-precision quadratures for evaluating Fourier-Chebyshev co...

متن کامل

Stopping functionals for Gaussian quadrature formulas

Gaussian formulas are among the most often used quadrature formulas in practice. In this survey, an overview is given on stopping functionals for Gaussian formulas which are of the same type as quadrature formulas, i.e., linear combinations of function evaluations. In particular, methods based on extended formulas like the important Gauss-Kronrod and Patterson schemes, and methods which are bas...

متن کامل

Computing rational Gauss-Chebyshev quadrature formulas with complex poles

We provide a fast algorithm to compute arbitrarily many nodes and weights for rational Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary complex poles outside [−1, 1]. This algorithm is based on the derivation of explicit expressions for the Chebyshev (para-)orthogonal rational functions.

متن کامل

Gauss-Hermite interval quadrature rule

The existence and uniqueness of the Gaussian interval quadrature formula with respect to the Hermite weight function on R is proved. Similar results have been recently obtained for the Jacobi weight on [−1, 1] and for the generalized Laguerre weight on [0,+∞). Numerical construction of the Gauss–Hermite interval quadrature rule is also investigated, and a suitable algorithm is proposed. A few n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010